Combinatorial Interpretations of the Jacobi-Stirling Numbers

نویسندگان

  • Yoann Gelineau
  • Jiang Zeng
چکیده

The Jacobi-Stirling numbers of the first and second kinds were introduced in the spectral theory and are polynomial refinements of the Legendre-Stirling numbers. Andrews and Littlejohn have recently given a combinatorial interpretation for the second kind of the latter numbers. Noticing that these numbers are very similar to the classical central factorial numbers, we give combinatorial interpretations for the Jacobi-Stirling numbers of both kinds, which provide a unified treatment of the combinatorial theories for the two previous sequences and also for the Stirling numbers of both kinds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial Interpretations of Particular Evaluations of Complete and Elementary Symmetric Functions

The Jacobi-Stirling numbers and the Legendre-Stirling numbers of the first and second kind were first introduced by Everitt et al. (2002) and (2007) in the spectral theory. In this paper we note that Jacobi-Stirling numbers and Legendre-Stirling numbers are specializations of elementary and complete symmetric functions. We then study combinatorial interpretations of this specialization and obta...

متن کامل

ar X iv : 0 90 5 . 28 99 v 2 [ m at h . C O ] 2 0 M ay 2 00 9 COMBINATORIAL INTERPRETATIONS OF THE JACOBI - STIRLING NUMBERS

The Jacobi-Stirling numbers of the first and second kinds were introduced in 2006 in the spectral theory and are polynomial refinements of the Legendre-Stirling numbers. Andrews and Littlejohn have recently given a combinatorial interpretation for the second kind of the latter numbers. Noticing that these numbers are very similar to the classical central factorial numbers, we give combinatorial...

متن کامل

3 J an 2 01 2 JACOBI - STIRLING POLYNOMIALS AND P - PARTITIONS IRA

Abstract. We investigate the diagonal generating function of the Jacobi-Stirling numbers of the second kind JS(n+ k, n; z) by generalizing the analogous results for the Stirling and Legendre-Stirling numbers. More precisely, letting JS(n + k, n; z) = pk,0(n) + pk,1(n)z + · · ·+ pk,k(n)z , we show that (1− t) ∑ n≥0 pk,i(n)t n is a polynomial in t with nonnegative integral coefficients and provid...

متن کامل

Jacobi-Stirling polynomials and P-partitions

We investigate the diagonal generating function of the Jacobi-Stirling numbers of the second kind JS(n+ k, n; z) by generalizing the analogous results for the Stirling and Legendre-Stirling numbers. More precisely, letting JS(n + k, n; z) = pk,0(n) + pk,1(n)z + · · ·+ pk,k(n)z, we show that (1− t)3k−i+1 ∑ n≥0 pk,i(n)t n is a polynomial in t with nonnegative integral coefficients and provide com...

متن کامل

Combinatorial aspects of continued fractions

We show that the universal continued fraction of the Stieltjes-Jacobi type is equivalent to the characteristic series of labelled paths in the plane . The equivalence holds in the set of series in non-commutative indeterminates . Using it, we derive direct combinatorial proofs of continued fraction expansions for series involving known combinatorial quantities : the Catalan numbers, the Bell an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2010